3.90 \(\int \csc ^2(e+f x) (a+b \sec ^2(e+f x))^{3/2} \, dx\)

Optimal. Leaf size=105 \[ \frac {3 b \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 f}+\frac {3 \sqrt {b} (a+b) \tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{2 f}-\frac {\cot (e+f x) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}{f} \]

[Out]

3/2*(a+b)*arctanh(b^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))*b^(1/2)/f+3/2*b*(a+b+b*tan(f*x+e)^2)^(1/2)*ta
n(f*x+e)/f-cot(f*x+e)*(a+b+b*tan(f*x+e)^2)^(3/2)/f

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 105, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {4132, 277, 195, 217, 206} \[ \frac {3 b \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 f}+\frac {3 \sqrt {b} (a+b) \tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{2 f}-\frac {\cot (e+f x) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}{f} \]

Antiderivative was successfully verified.

[In]

Int[Csc[e + f*x]^2*(a + b*Sec[e + f*x]^2)^(3/2),x]

[Out]

(3*Sqrt[b]*(a + b)*ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(2*f) + (3*b*Tan[e + f*x]*S
qrt[a + b + b*Tan[e + f*x]^2])/(2*f) - (Cot[e + f*x]*(a + b + b*Tan[e + f*x]^2)^(3/2))/f

Rule 195

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^p)/(n*p + 1), x] + Dist[(a*n*p)/(n*p + 1),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 277

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^p)/(c*(m +
1)), x] - Dist[(b*n*p)/(c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] &&
IGtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1] &&  !ILtQ[(m + n*p + n + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 4132

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_)]^(m_), x_Symbol] :> With[{ff = Fr
eeFactors[Tan[e + f*x], x]}, Dist[ff^(m + 1)/f, Subst[Int[(x^m*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), x]^p)/(
1 + ff^2*x^2)^(m/2 + 1), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && Integer
Q[n/2]

Rubi steps

\begin {align*} \int \csc ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {\left (a+b+b x^2\right )^{3/2}}{x^2} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac {\cot (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}{f}+\frac {(3 b) \operatorname {Subst}\left (\int \sqrt {a+b+b x^2} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac {3 b \tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{2 f}-\frac {\cot (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}{f}+\frac {(3 b (a+b)) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{2 f}\\ &=\frac {3 b \tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{2 f}-\frac {\cot (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}{f}+\frac {(3 b (a+b)) \operatorname {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{2 f}\\ &=\frac {3 \sqrt {b} (a+b) \tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{2 f}+\frac {3 b \tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{2 f}-\frac {\cot (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}{f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.18, size = 64, normalized size = 0.61 \[ -\frac {(a+b) \cot (e+f x) \sqrt {a+b \sec ^2(e+f x)} \, _2F_1\left (-\frac {1}{2},2;\frac {1}{2};\frac {b \sin ^2(e+f x)}{-a \sin ^2(e+f x)+a+b}\right )}{f} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[e + f*x]^2*(a + b*Sec[e + f*x]^2)^(3/2),x]

[Out]

-(((a + b)*Cot[e + f*x]*Hypergeometric2F1[-1/2, 2, 1/2, (b*Sin[e + f*x]^2)/(a + b - a*Sin[e + f*x]^2)]*Sqrt[a
+ b*Sec[e + f*x]^2])/f)

________________________________________________________________________________________

fricas [A]  time = 1.29, size = 370, normalized size = 3.52 \[ \left [\frac {3 \, {\left (a + b\right )} \sqrt {b} \cos \left (f x + e\right ) \log \left (\frac {{\left (a^{2} - 6 \, a b + b^{2}\right )} \cos \left (f x + e\right )^{4} + 8 \, {\left (a b - b^{2}\right )} \cos \left (f x + e\right )^{2} + 4 \, {\left ({\left (a - b\right )} \cos \left (f x + e\right )^{3} + 2 \, b \cos \left (f x + e\right )\right )} \sqrt {b} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right ) + 8 \, b^{2}}{\cos \left (f x + e\right )^{4}}\right ) \sin \left (f x + e\right ) - 4 \, {\left ({\left (2 \, a + 3 \, b\right )} \cos \left (f x + e\right )^{2} - b\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{8 \, f \cos \left (f x + e\right ) \sin \left (f x + e\right )}, \frac {3 \, {\left (a + b\right )} \sqrt {-b} \arctan \left (-\frac {{\left ({\left (a - b\right )} \cos \left (f x + e\right )^{3} + 2 \, b \cos \left (f x + e\right )\right )} \sqrt {-b} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{2 \, {\left (a b \cos \left (f x + e\right )^{2} + b^{2}\right )} \sin \left (f x + e\right )}\right ) \cos \left (f x + e\right ) \sin \left (f x + e\right ) - 2 \, {\left ({\left (2 \, a + 3 \, b\right )} \cos \left (f x + e\right )^{2} - b\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{4 \, f \cos \left (f x + e\right ) \sin \left (f x + e\right )}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^2*(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

[1/8*(3*(a + b)*sqrt(b)*cos(f*x + e)*log(((a^2 - 6*a*b + b^2)*cos(f*x + e)^4 + 8*(a*b - b^2)*cos(f*x + e)^2 +
4*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)
 + 8*b^2)/cos(f*x + e)^4)*sin(f*x + e) - 4*((2*a + 3*b)*cos(f*x + e)^2 - b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*
x + e)^2))/(f*cos(f*x + e)*sin(f*x + e)), 1/4*(3*(a + b)*sqrt(-b)*arctan(-1/2*((a - b)*cos(f*x + e)^3 + 2*b*co
s(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a*b*cos(f*x + e)^2 + b^2)*sin(f*x + e)))*co
s(f*x + e)*sin(f*x + e) - 2*((2*a + 3*b)*cos(f*x + e)^2 - b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/(f*c
os(f*x + e)*sin(f*x + e))]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \csc \left (f x + e\right )^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^2*(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

integrate((b*sec(f*x + e)^2 + a)^(3/2)*csc(f*x + e)^2, x)

________________________________________________________________________________________

maple [C]  time = 1.40, size = 2032, normalized size = 19.35 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(f*x+e)^2*(a+b*sec(f*x+e)^2)^(3/2),x)

[Out]

-1/2/f*((b+a*cos(f*x+e)^2)/cos(f*x+e)^2)^(3/2)*cos(f*x+e)*(6*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+
a-b)/(a+b))^(1/2)/sin(f*x+e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*
a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1
+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e))/(
a+b))^(1/2)*cos(f*x+e)^3*sin(f*x+e)*a*b+6*cos(f*x+e)^3*sin(f*x+e)*2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(
1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a
*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/
sin(f*x+e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-
b)/(a+b))^(1/2))*b^2-3*2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))
/(a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*
EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2
)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*cos(f*x+e)^3*sin(f*x+e)*a*b-3*cos(f*x+e)^3*sin(f*x+e)*2^(1/2)*((I*a^(
1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2)*c
os(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2
)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2
))*b^2+6*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),1/(2*I*a^(1/2)*b^(1/2)+
a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*2^(1/2)*((I*a^(1/
2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2)*cos
(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*cos(f*x+e)^2*sin(f*x+e)*a*b+6*cos(f*x+e)
^2*sin(f*x+e)*2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(
1/2)*(-2*(I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*EllipticP
i((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*
a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*b^2-3*cos(f*x+e)^2*sin(f*x+e)*2^(1/
2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(1/2)
*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*EllipticF((-1+cos(f*x+e))*((
2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+
b)^2)^(1/2))*a*b-3*cos(f*x+e)^2*sin(f*x+e)*2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos(f*x+
e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f
*x+e))/(a+b))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2
)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*b^2+2*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*cos
(f*x+e)^4*a^2+3*cos(f*x+e)^4*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a*b+((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/
2)*cos(f*x+e)^2*a*b+3*cos(f*x+e)^2*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b^2-((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b
))^(1/2)*b^2)/sin(f*x+e)/(b+a*cos(f*x+e)^2)^2/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)

________________________________________________________________________________________

maxima [A]  time = 0.34, size = 98, normalized size = 0.93 \[ \frac {3 \, a \sqrt {b} \operatorname {arsinh}\left (\frac {b \tan \left (f x + e\right )}{\sqrt {{\left (a + b\right )} b}}\right ) + 3 \, b^{\frac {3}{2}} \operatorname {arsinh}\left (\frac {b \tan \left (f x + e\right )}{\sqrt {{\left (a + b\right )} b}}\right ) + 3 \, \sqrt {b \tan \left (f x + e\right )^{2} + a + b} b \tan \left (f x + e\right ) - \frac {2 \, {\left (b \tan \left (f x + e\right )^{2} + a + b\right )}^{\frac {3}{2}}}{\tan \left (f x + e\right )}}{2 \, f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^2*(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

1/2*(3*a*sqrt(b)*arcsinh(b*tan(f*x + e)/sqrt((a + b)*b)) + 3*b^(3/2)*arcsinh(b*tan(f*x + e)/sqrt((a + b)*b)) +
 3*sqrt(b*tan(f*x + e)^2 + a + b)*b*tan(f*x + e) - 2*(b*tan(f*x + e)^2 + a + b)^(3/2)/tan(f*x + e))/f

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (a+\frac {b}{{\cos \left (e+f\,x\right )}^2}\right )}^{3/2}}{{\sin \left (e+f\,x\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b/cos(e + f*x)^2)^(3/2)/sin(e + f*x)^2,x)

[Out]

int((a + b/cos(e + f*x)^2)^(3/2)/sin(e + f*x)^2, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)**2*(a+b*sec(f*x+e)**2)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________